No Image

Риф это микробиология

СОДЕРЖАНИЕ
5 просмотров
17 ноября 2019

Иммунофлуоресцентный анализ (МФА — метод флуоресцирующих антител, иммунофлуоресценция) (англ. Immunofluorescence ) — набор иммунологических методов для качественного и количественного определения поверхностных и внутриклеточных антигенов в образцах клеточных суспензий (культур клеток, бактерий, микоплазм, риккетсий, вирусов), образцов крови, костного мозга, альвеолярных смывов, тонких тканевых срезов. Метод позволяет детально анализировать биологические образцы на присутствие определенных антигенных детерминант, характерных для определенных возбудителей или заболеваний, проводить количественную оценку как поверхностных так и внутриклеточных белков и рецепторов. Исследование и оценка может выполняться вручную при помощи флюоресцентного микроскопа или автоматизировано с использованием проточного цитометра (flow cytometer) или микрочипового цитометра (сhip cytometer). Возможно применение конфокального микроскопа и роботизированного флюоресцентного микроскопа (в том числе совмещенных с проточным цитометром) в сочетании с программной системой обработки изображений. Имеющиеся в настоящее время автоматизированные технологии позволяют анализировать в одном образце примерно 50 различных антигенов с использованием набора различных флюоресцентных маркеров в формате высокоинформативной микроскопии и цитометрии (методы носят названия high-content imaging, high-content cytometry, high-content screening) и примерно вдвое меньшем максимальным набором антигенов с использованием современной проточной цитометрии или конфокальной микроскопии. Основными практическими приложениями являются онкология, микробиология, клеточная биология, генетика, фармакология и др.

Сущность и классификация метода [ править | править код ]

Сущность метода заключается в визуализации антигена специфическими антителами с флуоресцентными маркерами. Метод конъюгации глобулинов с органическими флюорохромами разработан в 1942 году А. Кунсом (англ.) русск. . [1] В настоящее время метод использует как антитела к различным антигенам, так и специфические красители к ДНК (к примеру DAPI), РНК (к примеру Sybr Green II), липидам и белкам.

В базовой МФА методике различают прямой метод, разработанный А. Кунсом и Мелвином Капланом, [2] и непрямой, разработанный А. Кунсом и Уиллером в первоначальном варианте непрямого МФА с комплементом.

При прямом методе (пМФА) на исследуемый препарат или в суспензию клеток наносят раствор прямо меченых флюоресцентным красителем антител. Образование комплекса антиген-антитело обнаруживается флюоресцентным сигналом в виде свечения разной степени интенсивности и четкости.

При непрямом методе (нМФА) на препарат наносят антитела против искомых антигенов (т. н. «первые» антитела), а затем видоспецифичные «вторые» антитела против «первых» антител, что позволяет избежать неспецифических реакций. При этом только вторые антитела коньюгированны с флюоресцентным красителем. К примеру, если при исследовании в качестве «первых» антител используются мышиные антитела — mouse IgG, то в качестве «вторых» используются антивидовые anti-mouse IgG коньюгированные с флюоресцентным красителем. Комплекс антиген-антитело дает флюоресцентное окрашивание только после связывания со «вторым» антителом.

Непрямые методы требуют наличия только антиглобулиновых видовых сывороток с флюорохромами, но при этом необходимо большое количество тестовых контролей. При постановке прямым методом делается только один контроль, хотя в более ранних версиях метода требовалось множество моноспецифических сывороток. Долгое время недостатками прямых видов МФА являлись ограниченная чувствительность из-за наличия возможных перекрестных реакций между близкими по антигенному составу объектами и неспецифическая флуоресценция вследствие адсорбции флуоресцирующих глобулинов на различных элементах препарата. В настоящее время используются коммерческие стандартные конъюгаты, содержащие иммуноглобулины к исследуемым антигенам. Использование биоинженерных иммуноглобулинов и высокая степень очистки антител позволили практически свести на нет неспецифические реакции, что сделало возможным дальнейшее технологическое развитие метода.

Читайте также:  Определение степени чистоты влагалища

Поскольку прямой метод в настоящее время позволяет избежать неспецифических реакций, автоматизированные методики преимущественно используют прямой метод иммунофлуоресценции.

Результаты ручной микроскопической оценки описываются в так называемых «крестах» (от одного + до четырёх ++++) — субъективная градация степени выраженности реакции глазом исследователя. В автоматизированных методах в качестве детектора используются фотоумножители или высокочувствительные флуоресцентные фотокамеры, что позволяет регистрировать сигнал с большой точностью и дает значение относительного уровня флюоресценции (relative fluorescence ratio) в широком диапазоне шкалы. Абсолютное значение высчитывается с помощью контролей или антигенов с известным постоянным содержанием в образце. При использовании автоматизированных методов обработка данных осуществляется специализированными программами для обработки изображений и анализа цитометрических данных.

Значение и перспективы метода [ править | править код ]

Метод имеет решающее значение в ранней диагностике и лечении онкологических заболеваний (иммуногистохимия, онкогематология), диагностике инфекционных заболеваний (например определение CD4+ клеток при ВИЧ) и наследственных синдромов. Интенсивно развиваются автоматизированные методы, среди которых направления высокоинформативной микроскопии (high content imaging) и высокоинформативной цитометрии(high content cytometry),параллельно развивающиеся с 90х годов комбинированные методики цитометрии-микроскопии (цитометр-микроскоп), а также методы микрочиповой цитометрии с плазмонной голографией [3] в которых отдельные антитела метятся наночастицами.

Реакция иммунофлюоресценции (РИФ)

Реакция иммунофлюоресценции — РИФ (метод Кунса). Различают три разновидности метода прямой, непрямой, с комплементом. Реакция Кунса является методом экспресс-диагностики для выявления антигенов микробов или определения антител.
Прямой метод РИФ основан на том, что антигены тканей или микробы, обработанные иммунными сыворотками с антителами, меченными флюорохромами, способны светиться в УФ-лучах люминесцентного микроскопа. Бактерии в мазке, обработанные такой люминесцирующей сывороткой, светятся по периферии клетки в виде каймы зеленого цвета.
Непрямой метод РИФ заключается в выявлении комплекса антиген — антитело с помощью антиглобулиновой (против антитела) сыворотки, меченной флюорохромом. Для этого мазки из взвеси микробов обрабатывают антителами антимикробной кроличьей диагностической сыворотки. Затем антитела, не связавшиеся антигенами микробов, отмывают, а оставшиеся на микробах антитела выявляют, обрабатывая мазок антиглобулиновой (антикроличьей) сывороткой, меченной флюорохромами. В результате образуется комплекс микроб + антимикробные кроличьи антитела + антикроличьи антитела, меченные флюорохромом. Этот комплекс наблюдают в люминесцентном микроскопе, как и при прямом методе.

Впервые предложена Coombs в 1942 г. РИФ основана на выявлении антигенов в клиническом материале, препаратах клеток крови и др. с помощью моноклональных антител или сывороток, меченных флуорохромом (прямая РИФ). Первые (диагностические) антитела можно выявлять антииммуноглобулиновой сывороткой, меченной флуорохромами (непрямая РИФ). Существуют модификации РИФ для выявления антител к инфекционным агентам в сыворотке крови или антител в сыворотке крови.

Читайте также:  Можно ли загорать после операции

Популярность РИФ объясняется экономичностью, наличием широкого спектра диагностических наборов, быстротой получения ответа. Сегодня в этой реакции используются как поликлональные сыворотки, так и моноклональные антитела, меченные флюоресцеина изотиоцианатом (ФИТЦ). Для уменьшения неспецифического свечения фона применяют обработку препаратов бычьим сывороточным альбумином, меченным родамином или синькой Эванса.

Чаще всего РИФ используют для быстрого обнаружения возбудителя в патологическом материале. В этом случае из исследуемого материала готовят мазок на предметном стекле, как для обычной микроскопии. Препарат фиксируют метиловым спиртом, ацетоном или другим химическим фиксатором. На поверхность фиксированного мазка наносят меченные ФИТЦ сыворотки или моноклональые антитела (в случае непрямой РИФ препарат сначала обрабатывают сывороткой против искомого антигена, а затем мечеными антителами к иммуноглобулинам, использованным на первом этапе). Поскольку РИФ является разновидностью гетерогенного анализа, один этап отделяется от другого промывкой.

Учет результатов реакции осуществляется с помощью люминесцентного микроскопа, в оптическую систему которого устанавливается набор светофильтров, обеспечивающих освещение препарата ультрафиолетовым или сине-фиолетовым светом с заданной длинной волны. Исследователь оценивает характер свечения, форму, размер объектов и их взаимное расположение.

При постановке РИФ для обнаружения антител готовят мазки из эталонного штамма возбудителя. Исследуемую сыворотку наносят на мазок. Если в ней присутствуют искомые антитела, то они связываются с антигенами микробных клеток. Промывка препарата буферным раствором позволяет удалить несвязавшиеся антитела. Затем препарат обрабатывают меченой сывороткой против иммуноглобулинов человека. В случае положительного результата реакции при микроскопии мазка в люминесцентном микроскопе наблюдают специфическое свечение эталонной культуры.

Основным недостатком РИФ является ее субъективность.

Классическими критериями специфичности этой реакции являются:

· характерная морфология, размеры и расположение возбудителя в мазке;

· периферический характер свечения объекта;

При исследовании крупных объектов (трихомонады, клетки человека, клетки пораженные бактериями или вирусами) эти критерии позволяют получить достоверный результат. В то же время, элементарные тельца хламидий и микоплазмы имеют размеры, лежащие на пределе разрешающей способности люминесцентного микроскопа. При этом оценка морфологии микроорганизмов затруднена, а свечение теряет периферический характер. Остающихся критериев явно недостаточно для уверенной идентификации наблюдаемого микроорганизма. В связи с вышесказанным, субъективный характер учета реакции предъявляет особые требования к квалификации персонала, проводящего исследования.

2.2. Флуоресцентный иммуноанализ с временным разрешением (ФИА ВР, Etkins R. et Wallac O., 1984)

Эта разновидность ФИА основана на принципах сорбции одного из реагентов на твердой фазе и применении технологии «сэндвича», т.е. двойного распознавания, подобно тИФА. Однако важным отличием метода является применение в качестве метки хелатов лантаноидов (редкоземельных элементов европия, самария, тербия и диспрозия). Преимущества ФИА ВР – это высокая чувствительность, технология постановки, подобная ИФА, и потенциальная возможность значительного усиления полезного сигнала вследствие весьма высокого отношения сигнал/шум. Специфическая флуоресцентная метка флуоресцирует неизмеримо сильнее и дольше, чем фоновая флуоресценция. Кроме того, метка обладает способностью восстанавливать способность к свечению (для учета применяют импульсное возбуждающее излучение с периодом в 1с — более 1000 импульсов), что приводит к накоплению (усилению) полезного сигнала. Описываемая система реализована фирмой PerkinElmer, США, под названием Delfia и обладает чувствительностью более 10 -17 М при определении антигенов.

Читайте также:  Желточный мешок при беременности

2.3. Проточная цитофлуориметрия

· Проточная цитофлуориметрия это метод, основанный на измерении светорассеяния и специфической флуоресценции клеток (частиц) при освещении их лазером (ртутной лампой). Светорассеяние определяется размерами клеток, наличием гранул и других внутриклеточных органелл. Специфическая флуоресценция обусловлена окраской клеток моноклональными антителами против CD-антигенов, меченными флуорохромами. Рисунок 4. Схема цитофлуориметрии

При измерении указанных свойств происходит анализ и распределение клеток по соответствующим признакам.

Важнейшие области применения цитофлуориметрии:

· онкогематология (определение происхождения и степени дифференцировки опухолей крови);

· трансплантация (аутотрансплантация) красного костного мозга и стволовых клеток;

· клиническая иммунология (морфо-функциональный анализ состояния иммунокомпетентных клеток (ИКК) организма человека;

· другие задачи, требующие анализа частиц в суспензии (микробиология, цитология и др.).

Проведение анализа ИКК на проточном цитофлуориметре.

Для исследования ИКК крови их следует отделить от эритроцитов (методом градиентного центрифугирования или лизиса эритроцитов) и окрасить антителами против нужных CD антигенов.

Анализ клеток по показателям прямого и бокового светорассеяния дает следующее нормальное распределение (рис 5):

Каждая точка соответствует измеренному объекту (клетке). Обычное количество объектов/анализ – 3000-5000. Время анализа – 20-60 секунд.

Рисунок 5. Рапределение объектов в зависимости от размеров и внутренней структуры.

Возможности метода в полном объеме раскрываются при окрашивании клеток мечеными моноклональными антителами против соответствующих CD-антигенов (рис 6, 7):

Рисунок 6. Диаграмма флуоресценции мононуклеаров периферической крови, окрашенных антителами против CD4-антигена, меченными ФИТЦ.Рисунок 7. Распределение клеток, окрашенных антителами против CD3-ФИТЦ (зеленое свечение) и против CD19-ФЭ (фикоэритрин, красное свечение).

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 9949 — | 7468 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Комментировать
5 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Венерология
0 комментариев
No Image Венерология
0 комментариев
No Image Венерология
0 комментариев
No Image Венерология
0 комментариев
Adblock detector